What's So Special about Big Learning?

A Distributed Systems Perspective

Phillip B. Gibbons

Carnegie Mellon University

ICDCS'16 Keynote Talk, June 28, 2016

What's So Special about...Big Data?

Keynote #2: Prof. Masaru Kitsuregawa"Power of Big Data — from Commercial Profits to Societal Benefits"

Focus of this Talk: Big Learning

- Machine Learning over Big Data
- Examples:
 - Collaborative Filtering (via Matrix Factorization)
 - Recommending movies
 - Topic Modeling (via LDA)
 - Clusters documents into K topics
 - Multinomial Logistic Regression
 - Classification for multiple discrete classes
 - Deep Learning neural networks:

Also: Iterative graph analytics, e.g. PageRank

Big Learning Frameworks & Systems

 Goal: Easy-to-use programming framework for Big Data Analytics that delivers good performance on large (and small) clusters

- A few popular examples (historical context):
 - Hadoop (2006-)
 - GraphLab / Dato (2009-)
 - Spark / Databricks (2009-)

Hadoop

- Hadoop Distributed File System (HDFS)
- Hadoop YARN resource scheduler
- Hadoop MapReduce

Image from: developer.yahoo.com/hadoop/tutorial/module4.html

GraphLab

Graph Parallel: "Think like a vertex"

Graph Based Data Representation

Scheduler

Slide courtesy of Carlos Guestrin

Update Functions User Computation

Consistency Model

GraphLab & GraphChi

Distributed Graph Processing System

How Fast Can we Go?

Disk/SSD Graph Processing System

How Large Can we Go?

Slide courtesy of Carlos Guestrin

Spark: Key Idea

Features:

- In-memory speed w/fault tolerance via lineage tracking
- Bulk Synchronous

Resilient Distributed Datasets: A Fault-Tolerant Abstraction for InMemory Cluster Computing,

[Zaharia et al, NSDI'12, best paper]

A restricted form of shared memory, based on coarse-grained deterministic transformations rather than fine-grained updates to shared state: expressive, efficient and fault tolerant

Spark Stack Components

SparkSQL (2014) Spark Streaming (2012) MLlib machine learning (2013) GraphX Graph processing (2013)

Spark Core

Cluster Managers

Mesos, AWS, Yarn

Data Sources

HDFS, S3, Tachyon Cassandra, Hana

Tachyon: Memory-speed data sharing among jobs in different frameworks (e.g., Spark & Hadoop). Keeps in-memory data safe even when job crashes

GraphX: Tables & Graphs are views of same physical data, exploit semantics of view for efficient operation

Big Learning Frameworks & Systems

 Goal: Easy-to-use programming framework for Big Data Analytics that delivers good performance on large (and small) clusters

 Idea: Discover & take advantage of distinctive properties ("what's so special") of Big Learning algorithms

What's So Special about Big Learning? ...A Mathematical Perspective

- Formulated as an optimization problem
 - mathematical "model"
 - determine "parameters" of the model that minimizes (or maximizes) "objective function"
- E.g., Matrix Factorization: sparse ratings matrix

- Find P & Q that minimizes error term:

$$\sum_{r_{ij} \in R} (r_{ij} - \sum_{k=1}^{K} p_{ik} q_{kj})^2 + regularization term$$

Use training data (R) to learn parameters (P, Q)

What's So Special about Big Learning? ...A Mathematical Perspective

- Formulated as an optimization problem
 - Use training data to learn model parameters
- No closed-form solution, instead algorithms iterate until convergence
 - E.g., Stochastic Gradient Descent for Matrix
 Factorization or Multinomial Logistic Regression,
 LDA via Gibbs Sampling, Deep Learning, Page Rank

Image from charlesfranzen.com

What's So Special about Big Learning? ... A Distributed Systems Perspective

The Bad News

- Lots of Computation / Memory
 - Many iterations over Big Data
 - Big Models
 - → Need to distribute computation widely
- Lots of Communication / Synchronization
 - Not readily "partitionable"
- **→** Model Training is SLOW
 - hours to days to weeks, even on many machines

...why good distributed systems research is needed!

Big Models, Widely Distributed

[Li et al, OSDI'14]

Lots of Communication / Synchronization e.g. in BSP Execution (Hadoop, Spark)

Time

- Exchange ALL updates at END of each iteration
 - Frequent, bursty communication
- Synchronize ALL threads each iteration
 - ➡ Straggler problem: stuck waiting for slowest

What's So Special about Big Learning? ... A Distributed Systems Perspective

The Good News

- 1. Commutative/Associative parameter updates
- 2. Tolerance for lazy consistency of parameters
- 3. Repeated parameter data access pattern
- 4. Intra-iteration progress measure
- 5. Parameter update importance hints
- 6. Layer-by-layer pattern of deep learning

...can exploit to run orders of magnitude faster!

Parameter Servers for Distributed ML

- Provides all workers with convenient access to global model parameters
- Easy conversion of single-machine parallel ML algorithms
 - "Distributed shared memory" programming style
 - Replace local memory access with PS access

Single Machine Parallel

```
UpdateVar(i) {
  old = y[i]
  delta = f(old)
  y[i] += delta }
```

Distributed with PS

```
UpdateVar(i) {
  old = PS.read(y,i)
  delta = f(old)
  PS.inc(y,i,delta) }
```

[Power & Li, OSDI'10], [Ahmed et al, WSDM'12], [NIPS'13], [Li et al, OSDI'14], Petuum, MXNet, TensorFlow, etc

Recall: Bulk Synchrony & Its Costs

- Exchange ALL updates at END of each iteration
- Synchronize ALL threads each iteration
- Exploits: 1. commutative/associative updates &
 - 2 (partial). tolerance for lazy consistency within iteration

Bulk Synchrony => Frequent, bursty communication & stuck waiting for stragglers

But: **Fully asynchronous** => No algorithm convergence guarantees

Time

Stale Synchronous Parallel (SSP)

Fastest/slowest threads not allowed to drift >S iterations apart

Allow threads to <u>usually</u> run at own pace

Protocol: check cache first; if too old, get latest version from network Slow threads check only every S iterations – fewer network accesses, so catch up!

Exploits: 1. commutative/associative updates &

2. tolerance for lazy consistency (bounded staleness)

[NIPS'13]

Staleness Sweet Spot

Topic Modeling: Iteration Quantity and Quality

32 VMs, 10% minibatches

32 VMs, 10% minibatches

32 x 8 cores w/10Gbps Ethernet Nytimes dataset

^{* 10%} implies should divide all staleness bounds by 10

Staleness Sweet Spot

Topic Modeling

Nytimes dataset
400k documents
100 topics
LDA w/Gibbs sampling
8x4x16 cores
40Gbps Infiniband

[ATC'14]

What's So Special about Big Learning? ... A Distributed Systems Perspective

The Good News

- 1. Commutative/Associative parameter updates
- 2. Tolerance for lazy consistency of parameters
- 3. Repeated parameter data access pattern 🛑

- 4. Intra-iteration progress measure
- 5. Parameter update importance hints
- 6. Layer-by-layer pattern of deep learning

...can exploit to run orders of magnitude faster!

Repeated Data Access in PageRank

Input data: a set of links, stored locally in workers Parameter data: ranks of pages, stored in PS


```
Init ranks to random value
loop
foreach link from i to j {
    read Rank(i)
    update Rank(j)
  }
while not converged
```

Repeated Data Access in PageRank

Input data: a set of links, stored locally in workers Parameter data: ranks of pages, stored in PS

loop

Worker-0

```
# Link-0
read page[2].rank
update page[0].rank
# Link-1
read page[1].rank
update page[2].rank
```

while not converged

clock()

Repeated access sequence depends only on input data (not on parameter values)

Optimizations on Informed Access

Collect access sequence in "virtual iteration"

Useful for many optimizations:

1. Parameter data placement across machines

Optimizations on Informed Access

Collect access sequence in "virtual iteration"

Useful for many optimizations:

- 1. Parameter data placement across machines
- 2. Prefetching
- 3. Static cache policies
- 4. More efficient marshalling-free data structures
- 5. NUMA-aware memory placement
- Benefits resilient to imperfect Informed Access

IterStore: Exploiting Iterativeness

[SoCC'14]

Collaborative Filtering
(Matrix Factorization)
NetFlix data set
8 machines x 64 cores
40 Gbps Infiniband

99 iterations

4-5x faster than baseline 11x faster than GraphLab

What's So Special about Big Learning? ... A Distributed Systems Perspective

The Good News

- 1. Commutative/Associative parameter updates
- 2. Tolerance for lazy consistency of parameters
- 3. Repeated parameter data access pattern
- 4. Intra-iteration progress measure 🛑
- 5. Parameter update importance hints
- 6. Layer-by-layer pattern of deep learning

...can exploit to run orders of magnitude faster!

Addressing the Straggler Problem

- Many sources of transient straggler effects
 - Resource contention
 - System processes (e.g., garbage collection)
 - Slow mini-batch at a worker

Causes significant slowdowns for Big Learning

- FlexRR: SSP + Low-overhead work migration (RR) to mitigate transient straggler effects
 - Simple: Tailored to Big Learning's special properties
 E.g., cloning (used in MapReduce) would break the algorithm (violates idempotency)!
 - Staleness provides slack to do the migration

Rapid-Reassignment Protocol

- Multicast to preset possible helpees (has copy of tail of helpee's input data)
- Intra-iteration progress measure: percentage of input data processed
- Can process input data in any order
- Assignment is percentage range
- State is only in PS
- Work must be done exactly once

FlexRR Performance

A4 Standard

A3 Standard

What's So Special about Big Learning? ... A Distributed Systems Perspective

The Good News

- 1. Commutative/Associative parameter updates
- 2. Tolerance for lazy consistency of parameters
- 3. Repeated parameter data access pattern
- 4. Intra-iteration progress measure
- 5. Parameter update importance hints —
- 6. Layer-by-layer pattern of deep learning

...can exploit to run orders of magnitude faster!

Bosen: Managed Communication

- Combine SSP's lazy transmission of parameter updates with:
 - early transmission of larger parameter changes
 - up to bandwidth limit & staleness limit

(Idea: larger change likely to be an important update)

LDA Topic Modeling Nytimes dataset 16x8 cores

[SoCC'15]

What's So Special about Big Learning? ... A Distributed Systems Perspective

The Good News

- 1. Commutative/Associative parameter updates
- 2. Tolerance for lazy consistency of parameters
- 3. Repeated parameter data access pattern
- 4. Intra-iteration progress measure
- 5. Parameter update importance hints
- 6. Layer-by-layer pattern of deep learning -

...can exploit to run orders of magnitude faster!

Distributed Deep Learning

Partitioned training data

DistributedML workers

Shared model parameters

Layer-by-Layer Pattern of DNN

Class probabilities

Training images

- For each iteration (mini-batch)
 - A forward pass
 - Then a backward pass

Pairs of layers used at a time

GeePS: Parameter Server for GPUs

- Careful management of GPU & CPU memory
 - Use GPU memory as cache to hold pairs of layers
 - Stage remaining data in larger CPU memory

GeePS is 13x faster than Caffe (1 GPU) on 16 machines, 2.6x faster than IterStore (CPU parameter server)

GeePS: Parameter Server for GPUs

- Careful memory management
 - 13x faster than Caffe (1 GPU) on 16 machines,
 2.6x faster than IterStore (CPU PS)
- Efficiently handle problems > GPU memory
 - Support 4x longer videos for video classification
 - Handle models as large as 20 GB with 5 GB GPUs (prior data-parallel ML is limited to <5 GB models)

5GB GPU memory 20GB model = 70GB data

[EuroSys'16]

The Good News

- 1. Commutative/Associative parameter updates
- 2. Tolerance for lazy consistency of parameters
- 3. Repeated parameter data access pattern
- 4. Intra-iteration progress measure
- 5. Parameter update importance hints
- 6. Layer-by-layer pattern of deep learning

...can exploit to run orders of magnitude faster!

More Bad News

- Sensitivity to tunables
- Costly: can we use spot instances?
- Streaming/incremental data
- Geo-distributed data (with skew)

Sensitivity to Tunables

- Many tunables in ML algorithms:
 - Coefficients in optimization function,
 e.g., weights on regularization terms
 - Configuration tunables in optimization algorithm,
 e.g., learning rate, mini-batch size, staleness
- Quality of solution & rate of convergence are highly sensitive to these tunables
 - Today, mostly human trial-and-error

Open
Problem:
How to
automate?

Costly => Use Spot Instances?

 Spot Instances are often 85%-90% cheaper, but can be taken away at short notice

Open Problem: Effective, elastic Big Learning

Streaming / Incremental Data

- Training data is continually arriving
- Newest data is often the most valuable

Scenario:

- 20 iterations have been run on existing data
- Now, new batch of data arrives
- What should be done?

Open Problem: How to best incorporate incrementally arriving data?

Geo-Distributed Data (with Skew)

- Data sources are everywhere (geo-distributed)
 - Too expensive (or not permitted) to ship all data to single data center
- Big Learning over geo-distributed data
 - Low Bandwidth & High Latency of Inter-datacenter communication relative to Intra-data-center
 - Geo-distributed data may be highly skewed
 - Regional answers also of interest

Open Problem: Effective Big Learning systems for Geo-distributed data

Thanks to Collaborators & Sponsors

- CMU Faculty: Greg Ganger, Garth Gibson, Eric Xing
- CMU/ex-CMU Students: James Cipar, Henggang Cui,
 Wei Dai, Jesse Haber-Kucharsky, Aaron Harlap,
 Qirong Ho, Kevin Hsieh, Jin Kyu Kim, Dimitris Konomis,
 Abhimanu Kumar, Seunghak Lee, Aurick Qiao,
 Alexey Tumanov, Jinliang Wei, Lianghong Xu, Hao Zhang
 (Bold=first author)

Sponsors:

- PDL Consortium: Avago, Citadel, EMC, Facebook, Google, Hewlett-Packard Labs, Hitachi, Intel, Microsoft Research, MongoDB, NetApp, Oracle, Samsung, Seagate, Symantec, Two Sigma, Western Digital
- Intel (via ISTC for Cloud Computing & new ISTC for Visual Cloud Systems)
- National Science Foundation

(Many of these slides adapted from slides by the students)

The Bad News: Model Training is SLOW

- Lots of Computation / Memory
 - Many iterations over Big Data
 - Big Models
 - => Need to distribute computation widely
- Lots of Communication / Synchronization
 - Not readily "partitionable"

More Bad News: Sensitivity to tunables Costly=>spot instances? Streaming/incremental data Geo-distributed data (with skew)

The Good News

- Commutative/Associative parameter updates
- Tolerance for lazy consistency of parameters
- Repeated parameter data access pattern
- Intra-iteration progress measure
- Parameter update importance hints
- Layer-by-layer pattern of deep learning
- Others to be discovered

...can exploit to run orders of magnitude faster!

References

(in order of first appearance)

[Zaharia et al, NSDI'12] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J. Franklin, S. Shenker, and I. Stoica. Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing. Usenix NSDI, 2012.

[Li et al, OSDI'14] M. Li, D. G. Anderson, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski, J. Long, E. J. Shekita, and B.-Y. Su. Scaling distributed machine learning with the parameter server. Usenix OSDI, 2014.

[Power & Li, OSDI'10] R. Power and J. Li. Piccolo: Building Fast, Distributed Programs with Partitioned Tables. Usenix OSDI, 2010.

[Ahmed et al, WSDM'12] A. Ahmed, M. Aly, J. Gonzalez, S. M. Narayanamurthy, and A. J. Smola. Scalable inference in latent variable models. ACM WSDM, 2012.

[NIPS'13] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G. Gibson, G. Ganger, and E. Xing. More effective distributed ML via a state synchronous parallel parameter server. NIPS, 2013.

[Petuum] petuum.org

[MXNet] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, and Z. Zhang. MXNet: A flexible and efficient machine learning library for heterogeneous distributed systems. arXiv:1512.01274, 2015.

[TensorFlow] tensorflow.org

[ATC'14] H. Cui, J. Cipar, Q. Ho, J. K. Kim, S. Lee, A. Kumar, J. Wei, W. Dai, G. R. Ganger, P. B. Gibbons, G. A. Gibson, and E. P. Xing. Exploiting Bounded Staleness to Speed Up Big Data Analytics. Usenix ATC, 2014.

[Socc'14] H. Cui, A. Tumanov, J. Wei, L. Xu, W. Dai, J. Haber-Kucharsky, Q. Ho, G. R. Ganger, P. B. Gibbons, G. A. Gibson, and E. P. Xing. Exploiting iterative-ness for parallel ML computations. ACM Socc, 2014.

[under submission] A. Harlap, H. Cui, W. Dai, J. Wei, G. R. Ganger, P. B. Gibbons, G. A. Gibson, and E. P. Xing. Addressing the straggler problem for iterative convergent parallel ML. 2016.

References (cont.)

[Socc'15] J. Wei, W. Dai, A. Qiao, Q. Ho, H. Cui, G. R. Ganger, P. B. Gibbons, G. A. Gibson, and E. P. Xing. Managed Communication and Consistency for Fast Data-Parallel Iterative Analytics. ACM Socc, 2015.

[EuroSys'16] H. Cui, H. Zhang, G. R. Ganger, P. B. Gibbons, E. P. Xing. GeePS: Scalable deep learning on distributed GPUs with a GPU-specialized parameter server. EuroSys, 2016.